Sarah Stanley PhD

The King Sweesy and Robert Womack Endowed Chair in Medical Research and Public Health
Assistant Professor, Infectious Diseases and Vaccinology
  • PH263 Public Health Immunology
Research Interests: 


  • Mechanisms of pathogenesis and immune subversion in tuberculosis
  • Protective immunity to tuberculosis
  • Metabolic interactions between hosts and pathogens
  • Development of novel therapeutics for tuberculosis
  • Scientific capacity building
Selected Publications: 

Van Dis E, Sogi KM, Rae CS, Sivick KE, Surh NH, Leong ML, Kanne DB, Metchette K, Leong JJ, Bruml JR, Chen V, Heydari K, Cadieux N, Evans T, McWhirter SM, ChenDubensky TW, Portnoy DA, Stanley SA. STING-activating adjuvants elicit a Th17 immune response and protect against Mycobacterium tuberculosis infection, Cell Reports. 2018 May 1; 23(5):1435-1447

Knight M, Braverman J, Asfaha K, Gronert K, Stanley SA. Lipid droplet formation in Mycobacterium tuberculosis infected macrophages requires IFN-γ/HIF-1α signaling and supports host defense. PLoS Pathogens, 2018 Jan 25; 14(1):e1006874.

Braverman J, Stanley SA. Nitric oxide modulates macrophage responses to M. tuberculosisinfection through activation of HIF-1α and repression of NF-kB. J. Immunol, 2017Sep 1; 199(5):1805-1816.

Sogi KM, Lien KA, Johnson JR, Krogan NJ, Stanley SA.The tyrosine kinase inhibitor gefitinib restricts Mycobacterium tuberculosis growth through increased lysosomal biogenesis and modulation of cytokine signaling. ACS Infect Dis, 2017 Aug 11; 3(8):564-574.

Braverman, J, Sogi KM, Benjamin D, Nomura DK, Stanley SA. HIF-1α Is an Essential Mediator of IFN-γ–Dependent Immunity to Mycobacterium tuberculosisJournal of Immunology 2016 July, 1600266.

Stanley, SA, Barczak AK, Silvis, MR, Luo, SS,  Sogi, K, Vokes, M, Bray, M, Carpenter, AE, Siddiqi, N, Rubin EJ, Hung, DTH. A chemical screen to identify host-targeted small molecules that restrict intracellular Mycobacterium tuberculosis growth. PLoS Pathog 2014 Feb; 10(2): e1003946. doi:10.1371/journal.ppat.1003946.

Stanley, S.A., Kawate, T., Iwase, N., Shimuzu, M., Clatworthy, A., Kazyanskaya, E., Siddiqi, N., Sac-chettini J.C., Ioerger T.R., Aquadro, J.A., Rubin, E.J., Hung, Diarylcoumarins inhibit mycolic acid biosynthesis and kill M. tuberculosis by targeting FadD32. Proc Natl Acad Sci. 2013 Jul 9;110(28):11565-70.

Stanley, SA, Cox, JS. Host-pathogen interactions during Mycobacterium tuberculosis infections.  Current topics in Microbiology and Immunology, 2013 July 24.

Stanley, S.A., Kazyanskaya, E., Aquadro, J.A., Silvis, M., Gomez, J., Hung, D.T. Identification of novel inhibitors of M. tuberculosis growth using whole cell based high-throughput screening. ACS Chemical Biology, 2012 May 21.

Barczak, A.K., Gomez, J.E., Kaufmann, B.B., Hinson, E.R., Cosimi, L., Borowsky, M.L., Onderdonk, A.B., Stanley, S.A., Kaur, D., Bryant, K.F., Knipe, D.M., Sloutsky, A., Hung, D.T. RNA signatures allow rapid identification of pathogens and antibiotic susceptibilities. Proc Natl Acad Sci USA, 2012 April 17; 109(16):6217-22.

Chindelevitch, L., Stanley, S., Hung, D., Regev, A., Berger, B. MetaMerge: scaling up genome-scale metabolic reconstructions with application to Mycobacterium tuberculosis. Genome Biol. 2012 Jan 31; 13(1):R6.

Stanley S.A., Johndrow, J.E., Cox, J.S. The type I IFN response to infection with M. tuberculosis requires ESX-1 mediated secretion and contributes to pathogenicity. J. Immunol. 2007 Mar 1;178(5):3143-52.

Champion P.A., Stanley S.A., Champion M.M., Brown E.J., Cox J.S. C-terminal signal sequence promotes virulence factor secretion in Mycobacterium tuberculosis. Science. 2006 Sep 15;313(5793):1632-6.

MacGurn, J.A., Raghavan, S., Stanley, S.A., Cox, J.S. A non-RD1 gene cluster is required for Snm secretion in M. tuberculosis. Mol. Micro. 2005 Sep;57(6):1653-63.

Stanley S.A., Raghavan S., Hwang W.W., Cox J.S. Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci USA. 2003 Oct 28;100(22):13001-6.

Profile Updated: August 6, 2018